AFFILIATED INSTITUTIONS ANNA UNIVERSITY, CHENNAI REGULATIONS - 2009 CURRICULUM I SEMESTER (FULL TIME) M.Tech. MULTIMEDIA TECHNOLOGY SEMESTER I

SL. NO	COURSE CODE	COURSE TITLE	L	т	Р	С
THEORY						
1	MA9327	Optimization Techniques	3	1	0	4
2	MU9311	Data Structures and Algorithms	3	0	0	3
3	MU9312	Principles of Multimedia	3	0	0	3
4	MU9313	Advanced Computer Architecture	3	0	0	3
5	MU9314	Multimedia Communication and Networks	3	0	0	3
PRACTICAL						
6	MU9315	Multimedia Tools Laboratory	0	0	3	2
		TOTAL	. 15	1	3	18

MA9327 OPTIMIZATION TECHNIQUES

1. LINEAR PROGRAMMING

Linear Programming: Graphical method, Simplex method, Revised simplex method, Duality in Linear Programming (LP), Sensitivity analysis, other algorithms for solving problems, Transportation, assignment and other applications.

2. NON LINEAR PROGRAMMING

Non Linear Programming: Unconstrained optimization techniques, Direct search methods, Descent methods, constrained optimization.

3. INTEGER PROGRAMMING

Formulation of Integer Programming problems, Gomory's cutting plane methods, Branch and Bound Techniques.

4. DYNAMIC PROGRAMMING

Characteristics of Dynamic Programming, Bellman's principle of optimality, Concepts of dynamic programming, tabular method of solution, Calculus method of solution.

5. PERT/CPM

Network Construction-computation of earliest start time, latest start time, Total, free and independent float time-Crashing-Computation of optimistic, most likely Pessimistic and expected time-Resource analysis in Network scheduling.

REFERNCES:

- 1. Taha, H.A., "Operations Research: An Introduction", Pearson Education, New Delhi, 2002.
- 2. S.S. Rao, "Engineering Optimization: Theory and practice", New Age International, New Delhi, 2000.
- 3. Trivedi K.S., "Probability and Statistics with Reliability, Queuing and Computer Applications", Prentice Hall, New Delhi, 2003.

L T P C 3 1 0 4

(12)

(12)

(12)

(12)

L = 45 T = 15 Total = 60

(12)

MU9311 DATA STRUCTURE AND ALGORITHM

LTPC 3 0 0 3

1. INTRODUCTION

Basic concepts of OOPs – Templates – Fundamentals of Analysis of Algorithm Efficiency – ADT - List (Singly, Doubly and Circular) Implementation - Array, Pointer

2. BASIC DATA STRUCTURES

Stacks and Queues – ADT, Implementation and Applications - Trees – General, Binary, Binary Search, Expression Search, AVL, Splay, B-Trees – Implementations - Tree Traversals

3. ADVANCED DATA STRUCTURES

Set – Implementation – Basic operations on set – Priority Queue – Implementation - Graphs – Directed Graphs – Shortest Path Problem -Undirected Graph - Spanning Trees – Graph Traversals

4. SEARCHING AND SORTING

Searching Techniques, Sorting – Internal Sorting – Bubble Sort, Insertion Sort, Quick Sort, Heap Sort, Bin Sort, Radix Sort – External Sorting – Merge Sort, Multi-way Merge Sort, Polyphase Sorting

5. ALGORITHM DESIGN TECHNIQUES

Design Techniques - Divide and Conquer - Dynamic Programming - Greedy Algorithm – Backtracking - Local Search Algorithms

L – 45 Total – 45

REFERENCES:

- 1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", Pearson Education, 2002.
- 2. A. Levitin, "Introduction to The Design and Analysis of Algorithms ", 2nd edition, Addison Wesley, 2007 (chapter 2)
- 3. Horowitz, Sahni, Rajasekaran, "Computer Algorithms", Galgotia, 2000
- 4. Tanenbaum A.S., Langram Y, Augestien M.J., "Data Structures using C & C++", Prentice Hall of India, 2002
- 5. Aho, Hopcroft, Ullman, "Data Structures and Algorithms", Pearson Education, 2002.

(8)

(9)

(10)

(9)

(9)

MU9312 PRINCIPLES OF MULTIMEDIA

L INTRODUCTION

Introduction to Multimedia - Characteristics - Utilities - Creation - Uses -Promotion - Digital Representation - Media and Data streams - Multimedia Architecture – Multimedia Documents

2 ELEMENTS OF MULTIMEDIA

Text : types – font - Unicode standard - text compression - file formats. – Image: types - image processing - standards - specification - device independent color models - gamma correction - file formats - Video :video signal transmission signal formats - broadcasting standards - digital video standards - PC video video file formats - Audio : acoustics - characteristics of sound - elements of audio system - microphone - amplifier - loudspeaker - audio mixer - digital audio - MIDI – Graphics – components of graphics system, co-ordinate system – plotter - Intro to 2D & 3D Graphics -surface characteristics and texture - lights -Animation :key frames & Tweening, techniques, principles of animation, 3D animation, file formats.

3 **MULTIMEDIA SYSTEMS**

Visual Display Systems - CRT - video adapter card - video adapter cable - LCD - PDP - optical storage media - CD technology - DVD Technology -Compression Types and Techniques - CODEC - GIF coding standards - lossy and lossless - JPEG - MPEG-1 - MPEG-2 - MP3 - Fractals - MMDBS

4 MULTIMEDIA TOOLS

Authoring tools - features and types - card and page based tools - icon and object based tools - time based tools - cross platform authoring tools - Editing tools - text editing and word processing tools - OCR software - painting and drawing tools - 3D modeling and animation tools - image editing tools -sound editing tools - digital movie tools - plug -ins and delivery vehicles for www

5 MULTIMEDIA APPLICATION DEVELOPMENT

Software life cycle - ADDIE Model - conceptualization - content collection and processing - story - flowline - script - storyboard - implementation multiplatform issues - authoring - metaphors - testing - report writing documentation - case study: -Web Application - Console Application -Distributed Application – Mobile Application - games consoles – iTV – kiosks – education

TEXT BOOKS

- 1. Parekh R "Principles Of Multimedia" Tata McGraw-Hill, 2006.
- 2. Ralf Steinmetz, Klara Nahrstedt, "Multimedia: Computing, Communications and Applications" Prentice Hall, 1995.

REFERENCES

1. Tay Vaughan, "Multimedia: Making It Work" McGraw-Hill Professional, 2006

2. Deitel & Deitel "Internet & World Wide Web How to Program", Fourth Edition -Prentice Hall, 2008.

LTPC 3 0 0 3

TOTAL = 45

9

9

9

11

7

MU9313 ADVANCED COMPUTER ARCHITECTURE

5

LTPC 3003 9

1 PIPELINING AND ILP

Fundamentals of Computer Design - Measuring and Reporting Performance -Instruction Level Parallelism and Its Exploitation - Concepts and Challenges -Overcoming Data Hazards with Dynamic Scheduling – Dynamic Branch Prediction - Speculation - Multiple Issue Processors – Case Studies.

2 ADVANCED TECHNIQUES FOR EXPLOITING ILP

Compiler Techniques for Exposing ILP - Limitations on ILP for Realizable Processors - Hardware versus Software Speculation - Multithreading: Using ILP Support to Exploit Thread-level Parallelism - Performance and Efficiency in Advanced Multiple Issue Processors - Case Studies.

3 **MULTIPROCESSORS**

Symmetric and distributed shared memory architectures - Cache coherence issues - Performance Issues - Synchronization issues - Models of Memory Consistency - Interconnection networks - Buses, crossbar and multi-stage switches.

4 MULTI-CORE ARCHITECTURES

Software and hardware multithreading – SMT and CMP architectures – Design issues – Case studies – Intel Multi-core architecture – SUN CMP architecture – IBM cell architecture.- hp architecture.

5 MEMORY HIERARCHY DESIGN

Introduction - Optimizations of Cache Performance - Memory Technology and Optimizations - Protection: Virtual Memory and Virtual Machines - Design of Memory Hierarchies - Case Studies.

REFERENCES

- John L. Hennessey and David A. Patterson, " Computer Architecture A 1. guantitative approach", Morgan Kaufmann / Elsevier, 4th. edition, 2007.
- 2. David E. Culler, Jaswinder Pal Singh, "Parallel Computing Architecture : A hardware/ software approach", Morgan Kaufmann / Elsevier, 1997.
- William Stallings, " Computer Organization and Architecture Designing for 3. Performance", Pearson Education, Seventh Edition, 2006.

TOTAL - 45

9

9

9

9

MULTIMEDIA COMMUNICATION AND NETWORKS

1 IP NETWORKS

MU9314

Open Data Network Model – Narrow Waist Model of the Internet - Success and Limitations of the Internet – Suggested Improvements for IP and TCP – Significance of UDP in modern Communication – Network level Solutions – End to End Solutions - Best Effort service model – Scheduling and Dropping policies for Best Effort Service model

2 ADVANCED ROUTING

Intra AS routing – Inter AS routing – Router Architecture – Switch Fabric – Active Queue Management – Head of Line blocking – Transition from IPv4 to IPv6 – Multicasting – Abstraction of Multicast groups – Group Management – IGMP – Group Shared Multicast Tree – Source based Multicast Tree – Multicast routing in Internet – DVMRP and MOSPF – PIM – Sparse mode and Dense mode

3 GUARANTEED SERVICE MODEL

Best Effort service model – Scheduling and Dropping policies – Network Performance Parameters – Quality of Service and metrics – WFQ and its variants – Random Early Detection – QoS aware Routing – Admission Control – Resource Reservation – RSVP -Traffic Shaping Algorithms – Caching – Laissez Faire Approach - Possible Architectures – An Overview of QoS Architectures

4 MULTIMEDIA COMMUNICATION

Stream characteristics for Continuous media – Temporal Relationship – Object Stream Interactions, Media Levity, Media Synchronization – Models for Temporal Specifications – Streaming of Audio and Video – Jitter – Fixed playout and Adaptive playout – Recovering from packet loss – RTSP — Multimedia Communication Standards – RTP/RTCP – SIP and H.263

5 WIRELESS MULTIMEDIA COMMUNICATION

End to End QoS provisioning in Wireless Multimedia Networks – Adaptive Framework – MAC layer QoS enhancements in Wireless Networks – A Hybrid MAC protocol for Multimedia Traffic – Call Admission Control in Wireless Multimedia Networks – A Global QoS Management for Wireless Networks

REFERENCES

- 1. Jean Warland and Pravin Vareya, 'High Performance Networks', Morgan Kauffman Publishers, 2002
- 2. Mahbub Hassan and Raj Jain, 'High Performance TCP/IP Networking', Pearson Education, 2004.
- 3. William Stallings, 'High Speed Networks: Performance and Quality of Service', 2nd Edition, Pearson Education, 2002.
- 4. Kurose and Ross, 'Computer Networks : A top down Approach', Pearson Education, 2002
- 5. Nalin K Sharda, 'Multimedia Information Networking', Prentice Hall of India, 1999
- 6. Aura Ganz, Zvi Ganz and Kitti Wongthawaravat, 'Multimedia Wireless Networks: Technologies, Standards and QoS', Prentice Hall, 2003.
- 7. Ellen Kayata Wesel, 'Wireless Multimedia Communications: Networking Video, Voice and Data', Addision Wesley, 1998

LTPC 3003 9

9

9

9

9

MU9315

L T P C 0 0 3 2

- 1. Video editing
- 2. Audio editing
- 3. Image editing
- 4. 2D animation
- 5. 3D animation
- 6. HTML/Frontpage/Dreamweaver